How do you solve #2^(x) - 2^(-x) = 5#?
1 Answer
Jul 8, 2016
Explanation:
Let
Then the equation becomes:
#t-1/t = 5#
Multiply through by
#0 = 4t^2-20t-4#
#= (2t-5)^2-29#
#= (2t-5)^2-(sqrt(29))^2#
#=((2t-5)-sqrt(29))((2t-5)+sqrt(29))#
#=(2t-5-sqrt(29))(2t-5+sqrt(29))#
Hence:
#2^(x+1) = 2*2^x = 2t = 5+-sqrt(29)#
For any Real value of
So (for Real solutions) we require:
#2^(x+1) = 5+sqrt(29)#
Hence:
#x+1 = log_2(5+sqrt(29))#
So:
#x = log_2(5+sqrt(29))-1#
To calculate a numerical value for
#log_2(5+sqrt(29)) = ln(5+sqrt(29))/ln(2) ~~ 3.3764522#
So:
#x ~~ 3.3764522 - 1 = 2.3764522#