Take the natural logarithm of both sides:
ln(2^(x + 3)) = ln(5^(3x- 1))ln(2x+3)=ln(53x−1)
Apply the rule ln(a^n) = nlnaln(an)=nlna:
(x + 3)ln2 = (3x - 1)ln5(x+3)ln2=(3x−1)ln5
xln2 + 3ln2 = 3xln5 - ln5xln2+3ln2=3xln5−ln5
Isolate the x's to one side:
3ln2 + ln5 = 3xln5 - xln23ln2+ln5=3xln5−xln2
3ln2 + ln5= x(3ln5 - ln2)3ln2+ln5=x(3ln5−ln2)
Re-condense using the rule nlna = ln(a^n)nlna=ln(an).
ln8 + ln5 = x(ln125 - ln2)ln8+ln5=x(ln125−ln2)
Simplify both sides using the rule lna + lnb = ln(a xx b)lna+lnb=ln(a×b) and lna - lnb = ln(a/b)lna−lnb=ln(ab)
ln(8 xx 5) = x(ln(125/2))ln(8×5)=x(ln(1252))
ln(40) = x(ln(125/2))ln(40)=x(ln(1252))
x = ln40/ln62.5x=ln40ln62.5
If you want an approximation, you will get x ~=0.892x≅0.892.
Hopefully this helps!