How do you solve 2^(x+3)=5^(3x-1)2x+3=53x1?

1 Answer
Sep 19, 2016

x = ln40/ln62.5 ~= 0.892x=ln40ln62.50.892

Explanation:

Take the natural logarithm of both sides:

ln(2^(x + 3)) = ln(5^(3x- 1))ln(2x+3)=ln(53x1)

Apply the rule ln(a^n) = nlnaln(an)=nlna:

(x + 3)ln2 = (3x - 1)ln5(x+3)ln2=(3x1)ln5

xln2 + 3ln2 = 3xln5 - ln5xln2+3ln2=3xln5ln5

Isolate the x's to one side:

3ln2 + ln5 = 3xln5 - xln23ln2+ln5=3xln5xln2

3ln2 + ln5= x(3ln5 - ln2)3ln2+ln5=x(3ln5ln2)

Re-condense using the rule nlna = ln(a^n)nlna=ln(an).

ln8 + ln5 = x(ln125 - ln2)ln8+ln5=x(ln125ln2)

Simplify both sides using the rule lna + lnb = ln(a xx b)lna+lnb=ln(a×b) and lna - lnb = ln(a/b)lnalnb=ln(ab)

ln(8 xx 5) = x(ln(125/2))ln(8×5)=x(ln(1252))

ln(40) = x(ln(125/2))ln(40)=x(ln(1252))

x = ln40/ln62.5x=ln40ln62.5

If you want an approximation, you will get x ~=0.892x0.892.

Hopefully this helps!