How do you solve 2^x = 5^(x - 2)2x=5x2?

1 Answer
Apr 10, 2016

I found: x=(2ln(5))/((ln(5)-ln(2)))=3.513x=2ln(5)(ln(5)ln(2))=3.513

Explanation:

I would take the natural log of both sides:

color(red)(ln)2^x=color(red)(ln)5^(x-2)ln2x=ln5x2

then use the fact that logx^m=mlogxlogxm=mlogx and write:
xln(2)=(x-2)ln(5)xln(2)=(x2)ln(5)

rearrange:

xln(2)-xln(5)=-2ln(5)xln(2)xln(5)=2ln(5)
x[ln(2)-ln(5)]=-2ln(5)x[ln(2)ln(5)]=2ln(5)

and:

x=(-2ln(5))/((ln(2)-ln(5)))=(2ln(5))/((ln(5)-ln(2)))=3.513x=2ln(5)(ln(2)ln(5))=2ln(5)(ln(5)ln(2))=3.513