How do you solve 2^x = 5^(x+6)2x=5x+6?

1 Answer
Dec 2, 2015

6log_(2/5)56log255

Explanation:

2^x=5^(x+6)2x=5x+6
=>log_5 2^x=x+6log52x=x+6 (logarithm definition)
xlog_5 2=x+6xlog52=x+6 (the logarithm of the power of a number)
Divide both sides into xx:
=>1/x*(xlog_5 2)=1/x*(x+6)1x(xlog52)=1x(x+6)
=>(x+6)/x=log_5 2x+6x=log52
Add -11 to both sides:
(x+6)/x-1=log_5 2-1x+6x1=log521
=>6/x=log_5 2-16x=log521
=>x=6/(log_5 2-1)x=6log521
=6/(log_5 2-log_5 5)=6log52log55
=6/log_5 (2/5)=6log5(25)
=6log_(2/5)5=6log255