2^x=5^(x+6)2x=5x+6 =>log_5 2^x=x+6⇒log52x=x+6 (logarithm definition) xlog_5 2=x+6xlog52=x+6 (the logarithm of the power of a number)
Divide both sides into xx: =>1/x*(xlog_5 2)=1/x*(x+6)⇒1x⋅(xlog52)=1x⋅(x+6) =>(x+6)/x=log_5 2⇒x+6x=log52
Add -1−1 to both sides: (x+6)/x-1=log_5 2-1x+6x−1=log52−1 =>6/x=log_5 2-1⇒6x=log52−1 =>x=6/(log_5 2-1)⇒x=6log52−1 =6/(log_5 2-log_5 5)=6log52−log55 =6/log_5 (2/5)=6log5(25) =6log_(2/5)5=6log255