How do you solve 243^(.2x)=81^(x+5)?

1 Answer
Mar 11, 2016

x = -20 /3

Explanation:

243 ^(.2x) = 81^ (x+5)

Simplifying the bases by prime factorisation:

243 =3*3*3*3*3 =color(blue)( 3^5

81 = 3*3*3*3 = color(blue)(3^4

Thus, using the rule (a^b)^c=a^((bc)):

243 ^(,2x) = 3^((5xx.2x)) = 3^x

81^ (x+5) = 3^((4(x+5))) = 3^(4x + 20)

The expression becomes:

3^ (x) = 3^(4x + 20)

The bases are equal so we can equate powers:

x= 4x + 20

x-4x= 20

-3x = 20

x = -20/3