How do you solve 2cos^2 theta + cos theta -1 = 0?

1 Answer
Sep 15, 2016

(1 + 2k)pi; pi/3 + 2kpi; (5pi)/3 + 2kpi

Explanation:

Solve the quadratic equation for cos t.
f(t) = 2cos^2 t + cos t - 1 = 0
Since a - b + c = 0, use shortcut. The 2 real roots are:
cos t = -1 and cos t = -c/a = 1/2
Use trig table of special arcs and unit circle -->

a. cos t = -1 --> t = pi + 2kpi
General answers: t = (1 + 2k)pi
b. cos t = 1/2 --> t = +- pi/3 + 2kpi
arc (-pi)/3 and arc (5pi)/3 are co-terminal.
General answers:
(1 + 2k)pi
pi/3 + 2kpi
(5pi)/3 + 2kpi