How do you solve 2cos^2(theta) + sin(theta) = 1?

1 Answer
Jul 22, 2016

pi/2, (7pi)/6, and (11pi)/6

Explanation:

f(t) = 2cos^2 t + sin t - 1 = 0
Replace 2cos^2 t by 2(1 - sin^2 t) -->
f(t) = 2 - 2sin^2 t + sin t - 1 = 0
f(t) = - 2sin^2 t + sin t + 1 = 0
Solve this quadratic equation for sin t.
Since a + b + c = 0, use shortcut. Two real roots:
sin t = 1 and sin t = c/a = - 1/2
Use trig table and unit circle -->
a. sin t = 1 --> t = pi/2
b. sin t = - 1/2 --> There are 2 solution arcs t.
t = - (5pi)/6 or t = (7pi)/6 --> co-terminal arcs
and t = pi - (-(5pi)/6)= (11pi)/6.
Answers for (0, 2pi):
pi/2, (7pi)/6 and (11pi)/6