How do you solve 2cos^2 x + sin x - 2 = 02cos2x+sinx2=0 over the interval 0 to 2pi?

1 Answer
Feb 10, 2016

The set of solutions to 2cos^2(x)+sin(x)-2 = 02cos2(x)+sin(x)2=0 is {0, pi/6, (5pi)/6, pi, 2pi}{0,π6,5π6,π,2π}

Explanation:

Using the identity sin^2(x) + cos^2(x) = 1sin2(x)+cos2(x)=1 we have

2cos^2(x)+sin(x)-2 = 2(1-sin^2(x))+sin(x)-22cos2(x)+sin(x)2=2(1sin2(x))+sin(x)2

=2-2sin^2(x)+sin(x)-2=22sin2(x)+sin(x)2

=-2sin^2(x)+sin(x)=2sin2(x)+sin(x)

=sin(x)(-2sin(x)+1) = 0=sin(x)(2sin(x)+1)=0

Thus the equation is true when either
sin(x) = 0sin(x)=0
or
-2sin(x)+1 = 0 <=> sin(x) = 1/22sin(x)+1=0sin(x)=12

On the interval [0, 2pi][0,2π] we have sin(x) = 0sin(x)=0 if and only if x in {0, pi, 2pi}x{0,π,2π}

On the interval [0, 2pi][0,2π] we have sin(x) = 1/2sin(x)=12 if and only if x in {pi/6, (5pi)/6}x{π6,5π6}

Thus the set of solutions to 2cos^2(x)+sin(x)-2 = 02cos2(x)+sin(x)2=0 is {0, pi/6, (5pi)/6, pi, 2pi}{0,π6,5π6,π,2π}