How do you solve 2cos^2theta+3sintheta=02cos2θ+3sinθ=0?

2 Answers
Nov 12, 2016

2(1- sin^2theta) + 3sintheta= 02(1sin2θ)+3sinθ=0

2 - 2sin^2theta + 3sintheta = 022sin2θ+3sinθ=0

0= 2sin^2theta - 3sintheta - 20=2sin2θ3sinθ2

0 = 2sin^2theta - 4sintheta + sin theta - 20=2sin2θ4sinθ+sinθ2

0 = 2sintheta(sin theta - 2) + 1(sin theta -2)0=2sinθ(sinθ2)+1(sinθ2)

0 = (2sintheta + 1)(sin theta - 2)0=(2sinθ+1)(sinθ2)

sintheta= -1/2 and sintheta= 2sinθ=12andsinθ=2

theta= (7pi)/6, (11pi)/6θ=7π6,11π6

Hopefully this helps!

Nov 12, 2016

Please see the explanation.

Explanation:

Substitute 1 - sin^2(theta)1sin2(θ) for cos^2(theta)cos2(θ):

2(1 - sin^2(theta)) + 3sin(theta) = 02(1sin2(θ))+3sin(θ)=0

Use the distributive property:

2 - 2sin^2(theta)) + 3sin(theta) = 022sin2(θ))+3sin(θ)=0

Multiply both side by -1:

2sin^2(theta)) - 3sin(theta) - 2 = 02sin2(θ))3sin(θ)2=0

This is a quadratic where the variable is sin(theta)sin(θ).

It looks like it will factor:

#(sin(theta) - 2)(2sin(theta) + 1) = 0

sin(theta) = 2 and sin(theta) = -1/2sin(θ)=2andsin(θ)=12

We must discard the first root, because it is outside the range of the sine function.

Turning our attention to the second root:

sin(theta) = -1/2sin(θ)=12

Rotating counterclockwise from 0, the first encounter of this is at:

theta = (7pi)/6θ=7π6

The next encounter with this is at:

theta = (11pi)/6θ=11π6

Add integer rotations of 2pi2π to both:

theta = (7pi)/6 + 2npiθ=7π6+2nπ and theta = (11pi)/6 + 2npiθ=11π6+2nπ Where n can be any integer (positive, negative, or zero)