How do you solve 2cos^2theta-sin^2theta=1?

1 Answer
Dec 31, 2016

Use the identity sin^2x + cos^2x = 1.

2cos^2theta - (1 - cos^2theta) = 1

:.2cos^2theta - 1 + cos^2theta = 1

:.3cos^2theta = 2

:.cos^2theta = 2/3

:.costheta = +-sqrt(2/3)

:.theta = arccossqrt(2/3) + 2pin, pi - arccossqrt(2/3) + 2pin, pi + arccossqrt(2/3) + 2pin, 2pi - arccossqrt(2/3) + 2pin

:.theta = arccossqrt(2/3) + 2pin, (2n + 1)pi - arccossqrt(2/3), (2n + 1)pi + arccossqrt(2/3), 2pi(1 + n) - arccossqrt(2/3)

Hopefully this helps!