How do you solve 2cos^3x + cos^2x = 0 in the interval [0, 2pi]?

1 Answer
Apr 25, 2016

x in {pi/2,(2pi)/3,(4pi)/3,(3pi)/2}

Explanation:

2cos^3x+cos^2x=0
2cos^2x(cosx+1/2)=0
cos^2x=0 or cosx+1/2=0
cosx=0 or cosx=-1/2
x=pi/2+kpi or (x=(2pi)/3+2kpi or x=(4pi)/3+2kpi), where k in mathbb(Z)
Those are all real solutions but since we care about only the interval [0,2pi] the final solutions are: pi/2,(2pi)/3,(4pi)/3,(3pi)/2.