How do you solve 2cos(x/3)+sqrt2=02cos(x3)+2=0?

1 Answer
Sep 20, 2016

x = (9pi)/4 + 6kpix=9π4+6kπ
x = (15pi)/4 + 6kpix=15π4+6kπ

Explanation:

2cos (x/3) + sqrt2 = 02cos(x3)+2=0
cos (x/3) = -sqrt2/2cos(x3)=22
Trig Table and unit circle -->
x/3 = +- (3pi)/4x3=±3π4

a. x/3 = (3pi)/4 + 2kpix3=3π4+2kπ
x = 9pi/4 + 6kpi x=9π4+6kπ
b. x/3 = (5pi)/4 + 2kpix3=5π4+2kπ
(Arc (-3pi)/43π4 is co-terminal to arc (5pi)/45π4)
x = 15pi/4 + 6kpix=15π4+6kπ,