How do you solve 2cosx+3=02cosx+3=0?

2 Answers

x = (2k+1)pi +- ln((3+sqrt(5))/2) i" "x=(2k+1)π±ln(3+52)i for any integer kk

Explanation:

Given:

2 cos x + 3 = 02cosx+3=0

Subtracting 33 from both sides and dividing by 22 this becomes:

cos x = -3/2cosx=32

This is outside the range [-1, 1][1,1] of cos xcosx as a real valued function of real values. So there are no Real solutions.

What about complex solutions?

Euler's formula tells us:

e^(ix) = cos x + i sin xeix=cosx+isinx

Taking conjugate, we get :-

e^(-ix) = cos x - i sin xeix=cosxisinx

Hence on adding above two equations we get :-

cos x = 1/2(e^(ix) + e^(-ix))cosx=12(eix+eix)

So the given equation becomes:

e^(ix) + e^(-ix) + 3 = 0eix+eix+3=0

Multiplying by 4e^(ix)4eix and rearranging slightly:

0 = 4(e^(ix))^2+12(e^(ix))+40=4(eix)2+12(eix)+4

color(white)(0) = (2e^(ix))^2+2(2e^(ix))(3)+9-50=(2eix)2+2(2eix)(3)+95

color(white)(0) = (2e^(ix)+3)^2-(sqrt(5))^20=(2eix+3)2(5)2

color(white)(0) = (2e^(ix)+3-sqrt(5))(2e^(ix)+3+sqrt(5))0=(2eix+35)(2eix+3+5)

So:

e^(ix) = (-3+-sqrt(5))/2eix=3±52

So:

ix = ln((-3+-sqrt(5))/2) + 2kpiiix=ln(3±52)+2kπi

color(white)(ix) = +-ln((3+sqrt(5))/2) + (2k+1)piiix=±ln(3+52)+(2k+1)πi

for any integer kk

So:

x = (2k+1)pi +- ln((3+sqrt(5))/2) ix=(2k+1)π±ln(3+52)i

Apr 15, 2018

No solutions for x in RR

Explanation:

2cosx+3=0

Subtract 3 from both sides and divide by 2:

cosx=-3/2

This show that the equation has no real solutions. We know this because:

-1<=cosx<=1

The graph of y=2cos(x)+3 confirms this:

enter image source here