How do you solve 2cosxsinx-cosx=02cosxsinxcosx=0?

2 Answers
Jul 9, 2018

x={(2k+1)pi/2 ,kin ZZ}uu{kpi+(-1)^k*pi/6 ,kinZZ}

Explanation:

Here,

2cosxsinx-cosx=0

=>cosx(2sinx-1)=0

=>cosx=0 or 2sinx-1=0

=>cosx=0 or sinx=1/2

(i)cosx=0=>color(blue)(x=(2k+1)pi/2 ,kin ZZ

(ii)sinx=1/2=sin(pi/6)

=>x=color(blue)(kpi+(-1)^k*pi/6 ,kinZZ

So, the general solution of eqn. is :

x={(2k+1)pi/2 ,kin ZZ}uu{kpi+(-1)^k*pi/6 ,kinZZ}
…………………………………………………………………………………………

Note: If x in[0,2pi) ,or x in[0,360^circ) ,then

(I)cosx=0=>x=pi/2,(3pi)/2to{or90^circ,270^circ}

(II)sinx=1/2>0=>I^(st)Quadrant or II^(nd)Quadrant

=>x=pi/6,(5pi)/6to{ or30^circ,150^circ}

Jul 9, 2018

pi/2 + pi n " and "

pi/6 + 2pi n " and "(5 pi)/6 + 2 pi n

Explanation:

Given: Solve 2 cos x sin x - cos x = 0

Factor first:

2 cos x sin x - cos x = cos x (2 sin x - 1) = 0

cos x = 1 " and " 2 sin x - 1 = 0

pi/2; (3pi)/2 " and " sin x = 1/2

pi/2; (3pi)/2 " and " pi/6, (5 pi)/6

Since an interval isn't given the answer needs to be all values.

pi/2 " and " (3pi)/2 are pi away from each other, so we only need to give one answer:

pi/2 + pi n, where n is an integer

The other angle values are:

pi/6 + 2pi n " and "(5 pi)/6 + 2 pi n