How do you solve 2cotx-4/cotx=72cotx4cotx=7 in the interval 0<=x<=2pi0x2π?

1 Answer
Jun 14, 2017

14^@04; -63^@431404;6343

Explanation:

2cot x - 4/(cot x) - 7 = 02cotx4cotx7=0
2cot^2 x - 7cot x - 4 = 02cot2x7cotx4=0
Solve this quadratic equation for cot x.
D = d^2 = b^2 - 4ac = 49 + 32 = 81D=d2=b24ac=49+32=81 --> d = +- 9d=±9
There are 2 real roots:
cot x = -b/(2a) +- d/(2a) = 7/4 +- 9/4cotx=b2a±d2a=74±94
a. cot x = 16/4 = 4cotx=164=4 --> tan x = 1/4 tanx=14
Calculator gives -->
x = 14^@04x=1404
b. cot x = -2/4 = -1/2cotx=24=12 --> tan x = - 2tanx=2
x = -63^@43x=6343