How do you solve 2log_10 6 - 1/3 log_10 27 - log_10 x = 0?

1 Answer
Mar 31, 2016

First, use the log rule alogn = loga^n

Explanation:

log_10(6^2) - log_10(27^(1/3)) - log_10(x) = 0

Evaluate, using the exponent rule a^(n/m) = root(m)(a^n)

log_10(36) - log_10(3) - log_10(x) = 0

Now, use the log rule log_am - log_an = log_a(m/n)

log_10((36/3)/x) = 0

log_10(12/x) = 0

Convert to exponential form: log_an = x -> a^x = n

10^0 = 12/x

1 = 12/x

x = 12

Hopefully this helps!