How do you solve 2log(2x) = 1 + loga2log(2x)=1+loga?

1 Answer
Aug 15, 2016

x=sqrt(10a)/2x=10a2 (Assuming log = log_10log=log10)

Explanation:

2log_10(2x) = 1+log_10 a2log10(2x)=1+log10a

2log_10 2x - log_10 a =12log102xlog10a=1

2log_10 2x - 2log_10 a^(1/2) =12log102x2log10a12=1

2log_10((2x)/sqrt(a)) =12log10(2xa)=1

log_10((2x)/sqrt(a)) =1/2log10(2xa)=12

(2x)/sqrt(a) = 10^(1/2)2xa=1012

2x=sqrt(10a)2x=10a

x=sqrt(10a)/2x=10a2