How do you solve 2sec2x - cot2x = tan2x2sec2xcot2x=tan2x from 0 to 2pi?

2 Answers
May 26, 2018

x=pi/12,x=5*pi/12,x=13*pi/12,x=17*pi/12x=π12,x=5π12,x=13π12,x=17π12

Explanation:

Simplifying and factorizing the given equation we obtain
(-2+csc(2x))sec(2x)=0(2+csc(2x))sec(2x)=0

May 26, 2018

pi/12; (13pi)/12, and (5pi)/12 ; (17pi)/12π12;13π12,and5π12;17π12

Explanation:

Call X = 2x, the equation becomes:
2/(cos X) - cos X/(sin X) - sin X/(cos X) = 02cosXcosXsinXsinXcosX=0
(2sin X - cos^2 x - sin^2 x)/(sin X.cos x) = 02sinXcos2xsin2xsinX.cosx=0
2sin X - 1 + sin^2 X - sin^2 X = 02sinX1+sin2Xsin2X=0
Condition --> (sin X.cos X) != 0(sinX.cosX)0
2sin X = 12sinX=1 --> sin X = 1/2sinX=12 --> sin 2x = 1/2sin2x=12
Trig table and unit circle give 2 general solutions for 2x -->
2x = pi/6 + 2kpi2x=π6+2kπ and 2x = (5pi)/6 + 2kpi2x=5π6+2kπ
a. 2x = pi/6 + 2kpi2x=π6+2kπ --> x = pi/12 + kpix=π12+kπ
b. 2x = (5pi)/6 + 2kpi2x=5π6+2kπ --> x = (5pi)/12 + kpix=5π12+kπ
From 0 to 2pi2π, there are 4 answers (k = 1):
pi/12π12; and pi/12 + pi = (13pi)/12π12+π=13π12
(5pi)/125π12; and (5pi)/12 + pi = (17pi)/125π12+π=17π12