How do you solve 2secxtanx+2secx+tanx+1=02secxtanx+2secx+tanx+1=0 in the interval [0,360]?

1 Answer
Sep 8, 2016

The solution set is {(3pi)/4, (7pi)/4}{3π4,7π4}.

Explanation:

Factor:

2secx(tanx + 1) + 1(tanx + 1) = 02secx(tanx+1)+1(tanx+1)=0

(2secx + 1)(tanx + 1)= 0(2secx+1)(tanx+1)=0

secx = -1/2 and tanx = -1secx=12andtanx=1

cosx = -2 and tanx = -1cosx=2andtanx=1

x = O/ and x = (3pi)/4 and (7pi)/4x=andx=3π4and7π4

Hence, the solution set is {(3pi)/4, (7pi)/4}{3π4,7π4}.

Hopefully this helps!