How do you solve (2sin^2)2x=1 in the interval 0 to 2pi?

1 Answer

x=22.5^@, 67.5^@,112.5^@,157.5^@ OR

x=pi/8, (3pi)/8,(5pi)/8, (7pi)/8

Explanation:

I beleive the problem is to solve for

2 sin^2 (2x)=1

divide both sides of the equation by 2

(2 sin^2 (2x))/2=1/2

(cancel2 sin^2 (2x))/cancel2=1/2

sin^2 (2x)=1/2

sin 2x=+-1/sqrt2

2x=sin^-1 (-1/sqrt2)=225^@, 315^@

x_1=225/2=112.5^@

x_2=315/2=157.5^@

Also

2x=sin^-1 (+1/sqrt2)=45^@, 135^@

x_3=45/2=22.5^@

x_4=135/2=67.5^@

have a nice day !