How do you solve 2sin^2 x=2+cos x2sin2x=2+cosx between 0 and 2pi?

1 Answer
Mar 9, 2016

pi/2, (2pi)/3, (4pi)/3, and (3pi)/2π2,2π3,4π3,and3π2

Explanation:

Replace in the equation sin^2 xsin2x by (1 - cos^2 x(1cos2x
2(1 - cos^2 x) = 2 + cos x2(1cos2x)=2+cosx
- 2cos^2 x = cos x2cos2x=cosx
cos x + 2cos^2 x = cos x(1 + 2cos x) = 0cosx+2cos2x=cosx(1+2cosx)=0
a. cos x = 0 --> x = pi/2 and x = (3pi)/2x=π2andx=3π2
b. (1 + 2cos x) = 0 --> cos x = - 1/2cosx=12 --> x = +- (2pi)/3x=±2π3
The co-terminal arc of - (2pi)/3 is arc (4pi)/3.
Answer for (0, 2pi)(0,2π):
pi/2, (2pi)/3, (4pi)/3, (3pi)/2 π2,2π3,4π3,3π2