How do you solve 2sin^2xtanx=tanx2sin2xtanx=tanx?

1 Answer
Sep 22, 2016

x = 0, (pi) / (4)x=0,π4

Explanation:

We have: 2 sin^(2)(x) tan(x) = tan(x)2sin2(x)tan(x)=tan(x)

=> 2 sin^(2)(x) tan(x) - tan(x) = 02sin2(x)tan(x)tan(x)=0

=> tan(x) (2 sin^(2)(x) - 1) = 0tan(x)(2sin2(x)1)=0

=> tan(x) = 0tan(x)=0

=> x = arctan(0)x=arctan(0)

=> x = 0x=0

or

=> 2 sin^(2)(x) - 1 = 02sin2(x)1=0

=> sin^(2)(x) = (1) / (2)sin2(x)=12

=> sin(x) = (sqrt(2)) / (2)sin(x)=22

=> x = arcsin((sqrt(2)) / (2))x=arcsin(22)

=> x = (pi) / (4)x=π4

Therefore, the solutions to the equation are x = 0x=0 and x = (pi) / (4)x=π4.