How do you solve 2sin((3x)/2)+sqrt3=02sin(3x2)+3=0?

1 Answer
Aug 7, 2016

(8pi)/9 + 2kpi8π9+2kπ
(10pi)/9 + 2kpi10π9+2kπ

Explanation:

2sin ((3x)/2) + sqrt3 = 02sin(3x2)+3=0
sin ((3x)/2) = - sqrt3/2sin(3x2)=32
Trig table of special arcs, and unit circle give 2 arcs (3x)/2:
arc (3x)/2 = - (2pi)/33x2=2π3 , and arc (3x)/2 = pi - ((-2pi)/3) = (5pi)/33x2=π(2π3)=5π3
a. Arc (-2pi)/32π3 --> is the same as arc (4pi)/34π3 (co-terminal)
(3x)/2 = (4pi)/33x2=4π3 --> x = (4pi/3)(2/3) = (8pi)/9x=(4π3)(23)=8π9

b. (3x)/2 = (5pi)/33x2=5π3 --> x = (5pi/3)(2/3) = (10pi)/9x=(5π3)(23)=10π9
General answers:
x = (8pi)/9 + 2kpix=8π9+2kπ
x = (10pi)/9 + 2kpix=10π9+2kπ