How do you solve 2sinx cosx + cosx = 02sinxcosx+cosx=0 from 0 to 2pi?

1 Answer
Feb 24, 2016

Solution set is {pi/2, (7pi)/6, (3pi)/2, (11pi)/6}{π2,7π6,3π2,11π6}

Explanation:

In 2sinxcosx+cosx=02sinxcosx+cosx=0, taking cosxcosx common we get

cosx(2sinx+1)=0cosx(2sinx+1)=0

Hence,

either cosx=0cosx=0 whose solution in domain [0, 2pi][0,2π] is {pi/2, (3pi)/2}{π2,3π2}

or 2sinx+1=02sinx+1=0 i.e.sinx=-1/2sinx=12 whose solution in domain [0, 2pi][0,2π] is {(7pi)/6, (11pi)/6}{7π6,11π6}

Hence solution set is {pi/2, (7pi)/6, (3pi)/2, (11pi)/6}{π2,7π6,3π2,11π6}