How do you solve 2tan^2(t)+ 8tan(t)+ 4 = 0?

1 Answer
Aug 22, 2016

106^@34 + k180
149^@50 + k180^@

Explanation:

Call tan t = x and solve the below quadratic equation for x:
2x^2 + 8x + 4 = 0
Use the improved quadratic formula (Socratic Search):
D = d^2 = b^2 - 4ac - 64 - 32 = 32 --> d = +- 4sqrt2
There are 2 real roots:
tan t = x = -b/(2a) +- d/(2a) = -8/4 +- (4sqrt2)/4 = -2 +- sqrt2

a. tan t = -2 + sqrt2 = - 2 + 1.41 = - 0.59
Calculator -->
t = - 30^@54, or x = 149^@50 (co-terminal)
b. tan t = - 2 - sqrt2 = - 3.41.
Calculator gives:
t = - 73^@66 or t = 106^@34 (co-terminal)
General answers:
106^@34 + k180^@
149^@50 + k180^@