How do you solve 2tan^2x+sec^2x=22tan2x+sec2x=2?

1 Answer
Sep 18, 2016

This can be written as:

(2sin^2x)/cos^2x + 1/cos^2x = 22sin2xcos2x+1cos2x=2, using the identities tantheta = sin theta/costhetatanθ=sinθcosθ and sectheta = 1/costhetasecθ=1cosθ

Simplifying:

(2sin^2x+ 1)/cos^2x = 22sin2x+1cos2x=2

2sin^2x + 1 = 2cos^2x2sin2x+1=2cos2x

Apply the identity sin^2x + cos^2x = 1 -> sin^2x = 1 - cos^2xsin2x+cos2x=1sin2x=1cos2x to the left-hand side.

2(1 - cos^2x) + 1 = 2cos^2x2(1cos2x)+1=2cos2x

2 - 2cos^2x + 1 = 2cos^2x22cos2x+1=2cos2x

3 = 4cos^2x3=4cos2x

3/4 = cos^2x34=cos2x

+-sqrt(3)/2 = cosx±32=cosx

x = pi/6, (5pi)/6, (7pi)/6 and (11pi)/6x=π6,5π6,7π6and11π6

Note that these solutions are only those that are in the interval 0 ≤ x < 2pi0x<2π.

Hopefully this helps!