This can be written as:
(2sin^2x)/cos^2x + 1/cos^2x = 22sin2xcos2x+1cos2x=2, using the identities tantheta = sin theta/costhetatanθ=sinθcosθ and sectheta = 1/costhetasecθ=1cosθ
Simplifying:
(2sin^2x+ 1)/cos^2x = 22sin2x+1cos2x=2
2sin^2x + 1 = 2cos^2x2sin2x+1=2cos2x
Apply the identity sin^2x + cos^2x = 1 -> sin^2x = 1 - cos^2xsin2x+cos2x=1→sin2x=1−cos2x to the left-hand side.
2(1 - cos^2x) + 1 = 2cos^2x2(1−cos2x)+1=2cos2x
2 - 2cos^2x + 1 = 2cos^2x2−2cos2x+1=2cos2x
3 = 4cos^2x3=4cos2x
3/4 = cos^2x34=cos2x
+-sqrt(3)/2 = cosx±√32=cosx
x = pi/6, (5pi)/6, (7pi)/6 and (11pi)/6x=π6,5π6,7π6and11π6
Note that these solutions are only those that are in the interval 0 ≤ x < 2pi0≤x<2π.
Hopefully this helps!