How do you solve 2x^2+5x-12>=0?

1 Answer
Nov 30, 2016

The answer is x in ] -oo,-4] uu [3/2, oo[

Explanation:

Let's find the roots of the equation

2x^2+5x-12=0

This is a simultaneous equation, ax^2+bx+c=0

We calculate the discriminant,

Delta=b^2-4ac=25-4*2*-12=121

delta>0, so we have 2 real roots

The roots are

x=(-b+-sqrtDelta)/(2a)

=(-5+-11)/4

x_1=-4 and x_2=6/4=3/2

Let f(x)=2x^2+5x-12

We do a sign chart

color(white)(aaaa)xcolor(white)(aaaa)-oocolor(white)(aaaa)-4color(white)(aaaa)3/2color(white)(aaaa)+oo

color(white)(aaaa)x+4color(white)(aaaaaa)-color(white)(aaa)+color(white)(aaaa)+

color(white)(aaaa)x-3/2color(white)(aaaaa)-color(white)(aaa)-color(white)(aaaa)+

color(white)(aaaa)f(x)color(white)(aaaaaaa)+color(white)(aaa)-color(white)(aaaa)+

We need f(x)>=0

x in ] -oo,-4] uu [3/2, oo[
graph{2x^2+5x-12 [-12.66, 12.66, -6.34, 6.32]}