How do you solve 2x^2+5x-12>0 using a sign chart?

1 Answer
Dec 1, 2016

The answer is x in] -oo,-4 [ uu ] 3/2, oo[

Explanation:

Let's start by solving the quadratic equation

ax^2+bx+c=0

Our equation is f(x)=2x^2+5x-12

Let's calculate the discriminant

Delta=b^2-4ac=25-4*2(-12)=121

x=(-b+-sqrtDelta)/(2a)

x=(-5+-sqrt121)/4

x=(-5+-11)/4

x_1=-16/4=-4

x_2=6/4=3/2

Let's do our sign chart

color(white)(aaaa)xcolor(white)(aaaa)-oocolor(white)(aaaa)-4color(white)(aaaa)3/2color(white)(aaaa)+oo

color(white)(aaaa)x+4color(white)(aaaaa)-color(white)(aaaaa)+color(white)(aaaa)+

color(white)(aaaa)x-3/2color(white)(aaaa)-color(white)(aaaaa)-color(white)(aaaa)+

color(white)(aaaa)f(x)color(white)(aaaaaa)+color(white)(aaaaa)-color(white)(aaaa)+

So, f(x)>0, when x in] -oo,-4 [ uu ] 3/2, oo[