Let f(x)=2x^3-3x^2-32x+48
Then
f(4)=128-48-128+48=0
So, (x-4) is a factor of f(x)
To find the other factors, we do a long division
color(white)(aaaa)2x^3-3x^2-32x+48color(white)(aaaa)∣color(red)(x-4)
color(white)(aaaa)2x^3-8x^2color(white)(aaaaaaaaaaaaaa)∣color(blue)(2x^2+5x-12)
color(white)(aaaaaa)0+5x^2-32x
color(white)(aaaaaaaa)+5x^2-20x
color(white)(aaaaaaaaaa)+0-12x+48
color(white)(aaaaaaaaaaaaaa)-12x+48
color(white)(aaaaaaaaaaaaaaaa)-0+0
Therefore,
f(x)=2x^3-3x^2-32x+48=(x-4)(2x^2+5x-12)
=(x-4)(2x-3)(x+4)
Now, we can make the sign chart
color(white)(aaaa)xcolor(white)(aaaaaa)-oocolor(white)(aaaa)-4color(white)(aaaaa)3/2color(white)(aaaa)4color(white)(aaaa)+oo
color(white)(aaaa)x+4color(white)(aaaaaaa)-color(white)(aaaa)+color(white)(aaaaa)+color(white)(aaa)+
color(white)(aaaa)2x-3color(white)(aaaaaa)-color(white)(aaaa)-color(white)(aaaaa)+color(white)(aaa)+
color(white)(aaaa)x-4color(white)(aaaaaaa)-color(white)(aaaa)-color(white)(aaaaa)-color(white)(aaa)+
color(white)(aaaa)f(x)color(white)(aaaaaaaa)-color(white)(aaaa)+color(white)(aaaaa)-color(white)(aaa)+
Therefore,
f(x)>=0 when x in [-4,3/2] uu [4, +oo[