How do you solve 2x^3-3x^2-32x+48>=0 using a sign chart?

1 Answer
Jan 15, 2017

The answer is x in [-4,3/2] uu [4, +oo[

Explanation:

Let f(x)=2x^3-3x^2-32x+48

Then

f(4)=128-48-128+48=0

So, (x-4) is a factor of f(x)

To find the other factors, we do a long division

color(white)(aaaa)2x^3-3x^2-32x+48color(white)(aaaa)color(red)(x-4)

color(white)(aaaa)2x^3-8x^2color(white)(aaaaaaaaaaaaaa)color(blue)(2x^2+5x-12)

color(white)(aaaaaa)0+5x^2-32x

color(white)(aaaaaaaa)+5x^2-20x

color(white)(aaaaaaaaaa)+0-12x+48

color(white)(aaaaaaaaaaaaaa)-12x+48

color(white)(aaaaaaaaaaaaaaaa)-0+0

Therefore,

f(x)=2x^3-3x^2-32x+48=(x-4)(2x^2+5x-12)

=(x-4)(2x-3)(x+4)

Now, we can make the sign chart

color(white)(aaaa)xcolor(white)(aaaaaa)-oocolor(white)(aaaa)-4color(white)(aaaaa)3/2color(white)(aaaa)4color(white)(aaaa)+oo

color(white)(aaaa)x+4color(white)(aaaaaaa)-color(white)(aaaa)+color(white)(aaaaa)+color(white)(aaa)+

color(white)(aaaa)2x-3color(white)(aaaaaa)-color(white)(aaaa)-color(white)(aaaaa)+color(white)(aaa)+

color(white)(aaaa)x-4color(white)(aaaaaaa)-color(white)(aaaa)-color(white)(aaaaa)-color(white)(aaa)+

color(white)(aaaa)f(x)color(white)(aaaaaaaa)-color(white)(aaaa)+color(white)(aaaaa)-color(white)(aaa)+

Therefore,

f(x)>=0 when x in [-4,3/2] uu [4, +oo[