How do you solve 2x^3+5x^2>6x+9 using a sign chart?

1 Answer
Dec 30, 2016

The answer is x in ] -3, -1 [ uu ]3/2, +oo[

Explanation:

Let's rewrite the inequality as

2x^3+5x^2-6x-9>0

We must factorise the LHS

Let f(x)=2x^3+5x^2-6x-9

We calculate

f(-1)=-2+5+6-9=0

Therefore, (x+1) is a factor

To find the other factors, we do a long division

color(white)(aaaa)2x^3+5x^2-6x-9color(white)(aaaa)x+1

color(white)(aaaa)2x^3+2x^2color(white)(aaaaaaaaaaaa)2x^2+3x-9

color(white)(aaaaaa)0+3x^2-6x

color(white)(aaaaaaaa)+3x^2+3x

color(white)(aaaaaaaaaa)+0-9x-9

color(white)(aaaaaaaaaaaaaa)-9x-9

color(white)(aaaaaaaaaaaaaaa)-0-0

Therefore,

(2x^3+5x^2-6x-9)/(x+1)=2x^2+3x-9=(2x-3)(x+3)

So,

2x^3+5x^2-6x-9=(x+1)(2x-3)(x+3)>0

Now we can do the sign chart

color(white)(aaaa)xcolor(white)(aaaa)-oocolor(white)(aaaaa)-3color(white)(aaaa)-1color(white)(aaaa)3/2color(white)(aaaa)+oo

color(white)(aaaa)x+3color(white)(aaaaaa)-color(white)(aaaaa)+color(white)(aaaa)+color(white)(aaaa)+

color(white)(aaaa)x+1color(white)(aaaaaa)-color(white)(aaaaa)-color(white)(aaaa)+color(white)(aaaa)+

color(white)(aaaa)2x-3color(white)(aaaaa)-color(white)(aaaaa)-color(white)(aaaa)-color(white)(aaaa)+

color(white)(aaaa)f(x)color(white)(aaaaaaa)-color(white)(aaaaa)+color(white)(aaaa)-color(white)(aaaa)+

Therefore,

f(x)>0 when x in ] -3, -1 [ uu ]3/2, +oo[