Let's rewrite the inequality as
2x^3+5x^2-6x-9>0
We must factorise the LHS
Let f(x)=2x^3+5x^2-6x-9
We calculate
f(-1)=-2+5+6-9=0
Therefore, (x+1) is a factor
To find the other factors, we do a long division
color(white)(aaaa)2x^3+5x^2-6x-9color(white)(aaaa)∣x+1
color(white)(aaaa)2x^3+2x^2color(white)(aaaaaaaaaaaa)∣2x^2+3x-9
color(white)(aaaaaa)0+3x^2-6x
color(white)(aaaaaaaa)+3x^2+3x
color(white)(aaaaaaaaaa)+0-9x-9
color(white)(aaaaaaaaaaaaaa)-9x-9
color(white)(aaaaaaaaaaaaaaa)-0-0
Therefore,
(2x^3+5x^2-6x-9)/(x+1)=2x^2+3x-9=(2x-3)(x+3)
So,
2x^3+5x^2-6x-9=(x+1)(2x-3)(x+3)>0
Now we can do the sign chart
color(white)(aaaa)xcolor(white)(aaaa)-oocolor(white)(aaaaa)-3color(white)(aaaa)-1color(white)(aaaa)3/2color(white)(aaaa)+oo
color(white)(aaaa)x+3color(white)(aaaaaa)-color(white)(aaaaa)+color(white)(aaaa)+color(white)(aaaa)+
color(white)(aaaa)x+1color(white)(aaaaaa)-color(white)(aaaaa)-color(white)(aaaa)+color(white)(aaaa)+
color(white)(aaaa)2x-3color(white)(aaaaa)-color(white)(aaaaa)-color(white)(aaaa)-color(white)(aaaa)+
color(white)(aaaa)f(x)color(white)(aaaaaaa)-color(white)(aaaaa)+color(white)(aaaa)-color(white)(aaaa)+
Therefore,
f(x)>0 when x in ] -3, -1 [ uu ]3/2, +oo[