Let f(x)=2x^3+x^2-5x+2
f(1)=2+1-5+2=0
Therefore, (x-1) is a factor of f(x)
To find the other factors, we do a long division
color(white)(aaaa)2x^3+x^2-5x+2color(white)(aaaa)|x-1
color(white)(aaaa)2x^3-2x^2color(white)(aaaaaaaaaaa)|2x^2+3x-2
color(white)(aaaaa)0+3x^2-5x
color(white)(aaaaaaa)+3x^2-3x
color(white)(aaaaaaaa)+0-2x+2
color(white)(aaaaaaaaaaaa)-2x+2
color(white)(aaaaaaaaaaaaa)-0+0
Therefore,
f(x)=(x-1)(2x^2+3x-2)
=(x-1)(2x-1)(x+2)
Now, we build the sign chart
color(white)(aaaa)xcolor(white)(aaaaa)-oocolor(white)(aaaa)-2color(white)(aaaa)1/2color(white)(aaaa)1color(white)(aaaaaa)+oo
color(white)(aaaa)x+2color(white)(aaaaaa)-color(white)(aaaa)+color(white)(aaaa)+color(white)(aaaa)+
color(white)(aaaa)2x-1color(white)(aaaaa)-color(white)(aaaa)-color(white)(aaaa)+color(white)(aaaa)+
color(white)(aaaa)x-1color(white)(aaaaaa)-color(white)(aaaa)-color(white)(aaaa)-color(white)(aaaa)+
color(white)(aaaa)f(x)color(white)(aaaaaaa)-color(white)(aaaa)+color(white)(aaaa)-color(white)(aaaa)+
Therefore,
f(x)<=0 when x in ]-oo, 2] uu [1/2,1]