How do you solve (2x)/(x-2)+(x^2+3x)/((x+1)(x-2))=2/((x+1)(x-2))?

1 Answer
Jun 4, 2018

x=1/3 or x=-2

Explanation:

Multiply (2x)/(x-2) by x+1 so that the fractions are all over a common denominator

[2x(x+1)+x^2+3x]/[(x+1)(x-2)]=2/[(x+1)(x-2)]

[2x^2+2x+x^2+3x]/[(x+1)(x-2)]=2/[(x+1)(x-2)]

[3x^2+5x]/[(x+1)(x-2)]=2/[(x+1)(x-2)]

mutiply throughout by (x+1)(x-2) to remove the fractions

3x^2+5x=2

3x^2+5x-2=0

(3x-1)(x+2)=0

3x-1=0 or x+2=0

x=1/3 or x=-2