How do you solve 3(1-sinx)=2cos^2x3(1sinx)=2cos2x in the interval 0<=x<=2pi0x2π?

1 Answer
Nov 9, 2016

3 - 3sinx = 2cos^2x33sinx=2cos2x

Apply the identity sin^2theta + cos^2theta = 1- > cos^2theta = 1 - sin^2thetasin2θ+cos2θ=1>cos2θ=1sin2θ.

3 - 3sinx = 2(1 - sin^2x)33sinx=2(1sin2x)

3 - 3sinx = 2 - 2sin^2x33sinx=22sin2x

2sin^2x - 3sinx + 1 = 02sin2x3sinx+1=0

2sin^2x - 2sinx - sinx + 1 = 02sin2x2sinxsinx+1=0

2sinx(sinx - 1) - (sinx - 1) = 02sinx(sinx1)(sinx1)=0

(2sinx - 1)(sinx - 1) = 0(2sinx1)(sinx1)=0

sinx = 1/2 and sinx = 1sinx=12andsinx=1

x = pi/6, (5pi)/6, pi/2x=π6,5π6,π2

Hopefully this helps!