3 - 3sinx = 2cos^2x3−3sinx=2cos2x
Apply the identity sin^2theta + cos^2theta = 1- > cos^2theta = 1 - sin^2thetasin2θ+cos2θ=1−>cos2θ=1−sin2θ.
3 - 3sinx = 2(1 - sin^2x)3−3sinx=2(1−sin2x)
3 - 3sinx = 2 - 2sin^2x3−3sinx=2−2sin2x
2sin^2x - 3sinx + 1 = 02sin2x−3sinx+1=0
2sin^2x - 2sinx - sinx + 1 = 02sin2x−2sinx−sinx+1=0
2sinx(sinx - 1) - (sinx - 1) = 02sinx(sinx−1)−(sinx−1)=0
(2sinx - 1)(sinx - 1) = 0(2sinx−1)(sinx−1)=0
sinx = 1/2 and sinx = 1sinx=12andsinx=1
x = pi/6, (5pi)/6, pi/2x=π6,5π6,π2
Hopefully this helps!