How do you solve 3^(2x+1) = 5?

2 Answers
Aug 8, 2016

x=0.2326.

Explanation:

3^(2x+1)=5

:. 3^(2x)*3=5

:. 3^(2x)=5/3

:. log_10 3^(2x)=log_10 (5/3)

:.2x*log_10 3=log_10 5-log_10 3

:. 2x(0.4771)=0.6990-0.4771................[Using, Log Tables].

:. 2x(0.4771)=0.2219

:. log_10{(2x)(0.4771)}=log_10 0.2219

:. log_10 2+log_10 x+log_10 0.4771=log_10 0.2219

:. 0.3010+log_10x+(bar1).6786=(bar1).3461.

:.log_10x+(bar1).9796=(bar1).3461

:. log_10x=0.3461-0.9796=-0.6335=(bar1).3665

:. x=Anti-log_10 (bar1).3665

:. x=0.2326.

Aug 11, 2016

x = 0.232487

Explanation:

We have an exponential equation, but 5 is not one of the powers of 3, so logs are indicated, especially if the variable is in the index.

3^(2x+1) = 5

log 3^(2x+1) = log 5

(2x+1)log3 =log 5

2x+1 = log5/log

There is no law for simplifying #(log)/log), use a calculator or tables.

2x +1 = 1.4649735

2x = 0.464974

x = 0.232487