How do you solve 3^(2x+1) = 5?

2 Answers
Jun 30, 2017

I got:
x=1/2[ln(5)/ln(3)-1]=0.23486

Explanation:

We take the natural log of both sides:

ln(3)^(2x+1)=ln(5)

apply a property of logs and write:

(2x+1)ln(3)=ln(5)

rearrange:

2x+1=ln(5)/ln(3)

x=1/2[ln(5)/ln(3)-1]=0.23486

Jun 30, 2017

x~~0.232" to 3 dec. places"

Explanation:

"using the "color(blue)"law of logarithms"

• logx^nhArrnlogx

3^(2x+1)=5

"take ln (natural log) of both sides"

rArrln3^(2x+1)=ln5

rArr(2x+1)ln3=ln5

rArr2x+1=ln5/ln3larr" subtract 1 from both sides"

rArr2x=(ln5/ln3)-1larr" divide both sides by 2"

rArrx=1/2[(ln5/ln3)-1]~~0.232" 3 dec. places"