How do you solve 3^(5x)*81^(1-x)=9^(x-3)?

2 Answers
Oct 24, 2016

Put in a common base.

3^(5x) xx (3^4)^(1 - x) = (3^2)^(x - 3)

Simplify using the rules a^n xx a^m = a^(n + m) and (a^n)^m = a^(n xx m).

3^(5x) xx 3^(4 - 4x) = 3^(2x - 6)

3^(5x + 4 - 4x) = 3^(2x - 6)

We can now eliminate the bases and solve like a linear equation.

5x + 4 - 4x = 2x - 6

5x - 4x - 2x = -6 - 4

-x = -10

x = 10

Hopefully this helps!

Oct 24, 2016

x = 10

Explanation:

3^(5x)*81^(1-x) = 9^(x-3)

=> 3^(5x)*(3^4)^(1 - x) = (3^2)^(x-3)

=> 3^(5x)*3^(4(1-x)) = 3^(2(x-3))

=>3^(5x + 4 - 4x) = 3^(2x - 6)

=> 3^(x + 4) = 3^(2x - 6)

Apply log_3 to both sides

=> log_3 3^(x + 4) = log_3 3^(2x - 6)

=> (x + 4) log_3 3 = (2x - 6)log_3 3

=> x + 4 = 2x - 6

=> x = 10