How do you solve 3 cos^2 X + 7 sin X = 5?

1 Answer
May 22, 2016

General solution of 3sin^2X-7sinX+2=0 is

npi+(-1)^npi/9.244

Explanation:

3cos^2X+7sinX=5

or 3(1-sin^2X)+7sinX-5=0

or -3sin^2X+3+7sinX-5=0

or 3sin^2X-7sinX+2=0

or 3sin^2X-6sinX-sinX+2=0

or 3sinX(sinX-2)-1(sinX-2)=0

or (3sinX-1)(sinX-2)=0

But as range of sinX is within [-1,1]

sinX-2!=0 and hence

3sinX-1=0 or sinX=1/3 or X=19.47^o=pi/9.244

Hence General solution of 3sin^2X-7sinX+2=0 is

npi+(-1)^npi/9.244