How do you solve -3 + \frac{1}{x+1}=\frac{2}{x}3+1x+1=2x by finding the least common multiple?

1 Answer

See answer below

Explanation:

Given that

-3+1/{x+1}=2/x3+1x+1=2x

-3+1/{x+1}-2/x=03+1x+12x=0

{-3x(x+1)+x-2(x+1)}/{x(x+1)}=03x(x+1)+x2(x+1)x(x+1)=0

{-3x^2-3x+x-2x-2}/{x(x+1)}=03x23x+x2x2x(x+1)=0

{-3x^2-4x-2}/{x(x+1)}=03x24x2x(x+1)=0

-3x^2-4x-2=0\quad (\forall \ x\ne 0, x\ne -1)

3x^2+4x+2=0

B^2-4AC=4^2-4(3)(2)=-8<0

The given equation has no real root .

The complex roots are given by quadratic formula as follows

x=\frac{-4\pm\sqrt{(4)^2-4(3)(2)}}{2(3)}

=\frac{-4\pm2i\sqrt2}{6}

=\frac{-2\pmi\sqrt2}{3}