3/(z^2-z-2)+18/(z^2-2z-3)=(z+21)/(z^2-z-2)
rArr3/(z^2-z-2)+18/(z^2-2z-3)-(z+21)/(z^2-z-2)=0
To solve this equation we should find the common denominator,
so we have to factorize the denominators of the fractions above.
Let us factorize color(blue)(z^2-z-2) and color(red)(z^2-2z-3)
We can factorize using this method X^2+color(brown)SX+color(brown)P
where color(brown)S is the sum of two real number a and b
and
color(brown)P is their product
X^2+color(brown)SX+color(brown)P=(X+a)(X+b)
color(blue)(z^2-z-2)
Here,color(brown)S=-1 and color(brown)P=-2
so, a=-2 and b=+1
Thus,
color(blue)(z^2-z-2=(z-2)(z+1)
Factorize color(red)(z^2-2z-3)
Here,color(brown)S=-2 and color(brown)P=-3
so, a=-3 and b=+1
Thus,
color(red)(z^2-2z-3=(z-3)(z+1)
let us start solving the equation:
3/color(blue)(z^2-z-2)+18/color(red)(z^2-2z-3)-(z+21)/color(blue)(z^2-z-2)=0
rArr3/color(blue)((z-2)(z+1))+18/color(red)((z-3)(z+1))-(z+21)/color(blue)((z-2)(z+1))=0
rArr(3(color(red)(z-3))+18(color(blue)(z-2))-(z+21)(color(red)(z-3)))/((z-2)(z-3)(z+1))=0
rArr(3z-9+18z-36-(z^2-3z+21z-63))/((z-2)(z-3)(z+1))=0
rArr(3z-9+18z-36-(z^2+18z-63))/((z-2)(z-3)(z+1))=0
rArr(3z-9+18z-36-z^2-18z+63)/((z-2)(z-3)(z+1))=0
rArr(3z-9cancel(+18z)-36-z^2cancel(-18z)+63)/((z-2)(z-3)(z+1))=0
rArr(-z^2+3z+18)/((z-2)(z-3)(z+1))=0
As we know a fraction color(orange)(m/n=0rArrm=0)
-z^2+3z+18=0
color(green)delta=(3)^2-4(-1)(18)=9+72=81
Roots are:
x_1=(-3+sqrt81)/(2(-1))=(-3+9)/(-2)=-3
x_1=(-3-sqrt81)/(2(-1))=(-3-9)/(-2)=6
-z^2+3z+18=0
(z+3)(z-6)=0
z+3=0rArrcolor(brown)(z=-3)
Or
z-6=0rArrcolor(brown)(z=6)