How do you solve 3000/(2+e^(2x))=2?

1 Answer
Dec 13, 2015

x= ln(1498)/2

Explanation:

We will use the following properties of logarithms:

  • ln(a^x) = xln(a)

  • log_a(a) = 1


3000/(2+e^(2x)) = 2

=> 3000 = 2(2+e^(2x))=4 + 2e^(2x)

=> 2996 = 2e^(2x)

=> 1498 = e^(2x)

=> ln(1498) = ln(e^(2x)) = 2xln(e) = 2x(1) = 2x

=> x = ln(1498)/2