The inequality is
32p^2-2p^6<0
Factorising
2p^2(16-p^4)<0
2p^2(4-p^2)(4+p^2)<0
2p^2(2+p)(2-p)(4+p^2)<0
Let's build the sign chart
(4+p^2)>0
Let f(p)=2p^2(2+p)(2-p)(4+p^2)
color(white)(aaaa)pcolor(white)(aaaa)-oocolor(white)(aaaa)-2color(white)(aaaaaaa)0color(white)(aaaaaaaa)2color(white)(aaaa)+oo
color(white)(aaaa)p^2color(white)(aaaaaaaa)+color(white)(aaaaa)+color(white)(aaa)0color(white)(aaaa)+color(white)(aaaa)+
color(white)(aaaa)2+pcolor(white)(aaaaaa)-color(white)(aa)0color(white)(aa)+color(white)(aaaaaaaa)+color(white)(aaaa)+
color(white)(aaaa)2-pcolor(white)(aaaaaa)+color(white)(aaaaa)+color(white)(aa)#color(white)(aaaaaa)+#color(white)(a)0color(white)(aa)-
color(white)(aaaa)f(p)color(white)(aaaaaaa)-color(white)(aa)0color(white)(aa)+color(white)(aaa)0color(white)(aaaa)+color(white)(a)0color(white)(aa)-
Therefore,
f(p)<0 when p in (-oo,-2) uu(2,+oo)
graph{32x^2-2x^6 [-7.554, 6.49, -3.425, 3.595]}