How do you solve 32p^2-2p^6<0 using a sign chart?

1 Answer
May 30, 2018

The solution is p in (-oo,-2) uu(2,+oo)

Explanation:

The inequality is

32p^2-2p^6<0

Factorising

2p^2(16-p^4)<0

2p^2(4-p^2)(4+p^2)<0

2p^2(2+p)(2-p)(4+p^2)<0

Let's build the sign chart

(4+p^2)>0

Let f(p)=2p^2(2+p)(2-p)(4+p^2)

color(white)(aaaa)pcolor(white)(aaaa)-oocolor(white)(aaaa)-2color(white)(aaaaaaa)0color(white)(aaaaaaaa)2color(white)(aaaa)+oo

color(white)(aaaa)p^2color(white)(aaaaaaaa)+color(white)(aaaaa)+color(white)(aaa)0color(white)(aaaa)+color(white)(aaaa)+

color(white)(aaaa)2+pcolor(white)(aaaaaa)-color(white)(aa)0color(white)(aa)+color(white)(aaaaaaaa)+color(white)(aaaa)+

color(white)(aaaa)2-pcolor(white)(aaaaaa)+color(white)(aaaaa)+color(white)(aa)#color(white)(aaaaaa)+#color(white)(a)0color(white)(aa)-

color(white)(aaaa)f(p)color(white)(aaaaaaa)-color(white)(aa)0color(white)(aa)+color(white)(aaa)0color(white)(aaaa)+color(white)(a)0color(white)(aa)-

Therefore,

f(p)<0 when p in (-oo,-2) uu(2,+oo)

graph{32x^2-2x^6 [-7.554, 6.49, -3.425, 3.595]}