How do you solve 3cos^2x-6cosx=sin^2x-33cos2x6cosx=sin2x3?

1 Answer
Nov 26, 2016

The solutions are S= {2kpi,pi/3+2kpi,-pi/3+2kpi}S={2kπ,π3+2kπ,π3+2kπ}, k in ZZ

Explanation:

We use

cos^2x+sin^2x=1

3cos^2x-6cosx=sin^2x-3

3cos^2x-6cosx=1-cos^2x-3=-cos^2x-2

4cos^2x-6cosx+2=0

Dividing by 2

2cos^2x-3cosx+1=0

This is a quadratic equation

The discriminant is

Delta=b^2-4ac=9-4*2*1=1

Delta>0, we have2 real roots

cosx=(-b+-sqrt(Delta))/(2a)

cosx=(3+-1)/4

cosx=1 or cosx=1/2

x=0+2kpi or x=pi/3+2kpi or x=-pi/3+2kpi

k in ZZ