How do you solve -3cosx+3=2sin^2x in the interval 0<=x<=2pi?

1 Answer
Nov 7, 2016

x={(2pi)/3,pi,(4pi)/3}

Explanation:

3cosx+3=2sin^2x

hArr3cosx+3=2(1-cos^2x)

or 3cosx+3=2-2cos^2x

or 2cos^2x+3cosx+1-0

or 2cos^2x+2cosx+cosx+1-0

or 2cosx(cosx+1)+1(cosx+1)=0

or (2cosx+1)(cosx+1)=0

and hence either 2cosx+1=0 i.e. cosx=-1/2

or cosx+1=0 i.e. cosx=-1

Considering 0<= x <= 2pi,

x=(2pi)/3 or x=(4pi)/3 or x=pi

i.e. x={(2pi)/3,pi,(4pi)/3}