How do you solve 3cscA-2sinA-5=0?

2 Answers
Mar 4, 2018

A=kpi+(-1)^k(pi/6),kinZ

Explanation:

3cscA-2sinA-5=0
rArr3/sinA-2sinA-5=0
rArr3-2sin^2A-5sinA=0
rArr2sin^2A+5sinAcolor(red)(-3)=0
rArr2sin^2A+6sinA-sinA-3=0
rArr2sinA(sinA+3)-1(sinA+3)=0
rArr(sinA+3)(2sinA-1)=0
rArrsinA=-3!in[-1,1],sinA=1/2in[-1,1]
rArrsinA=sin(pi/6)
rArrA=kpi+(-1)^k(pi/6),kinZ
rArrA=kpi+(-1)^k(pi/6),kinZ

Mar 4, 2018

A=(npi)/2+-pi/3, ninZZ
color(white)(A)=n90^circ+-60^circ, ninZZ

Explanation:

First we multiply everything by sinA since cscA=1/sinA and sinA/sinA=1#

sinA(3cscA-2sinA-5)=sinA(0)

3-2sin^2A-5sinA=0

Substitute x=sinA

2x^2+5x-3=0

x=(-b+-sqrt(b^2-4ac))/2

color(white)(x)=(-5+-sqrt(5^2-4(2*-3)))/4

color(white)(x)=(-5+-sqrt(25+24))/4

color(white)(x)=(-5+-sqrt(49))/4

color(white)(x)=(-5+-7)/4

color(white)(x)=(-5-7)/4 or (-5+7)/4

color(white)(x)=-12/4 or 2/4

color(white)(x)=-3 or 1/2

However, -1lesinAle1 so we must take 1/2

sinA=1/2

A=arcsin(1/2)=pi/6-=30^circ, A=(5pi)/6-=150^circ

A=(npi)/2+-pi/3, ninZZ
color(white)(A)=n90^circ+-60^circ, ninZZ