How do you solve 3sin( 2 x ) +cos( 2 x ) = 03sin(2x)+cos(2x)=0 from 0 to 2pi?

2 Answers
Apr 18, 2016

S={1.4099,2.9807,4.5515,6.1223}S={1.4099,2.9807,4.5515,6.1223}

Explanation:

Use the following formulas to Transform the Equation
Acosx+Bsinx=C cos (x-D)Acosx+Bsinx=Ccos(xD)
C=sqrt(A^2+B^2), cosD=A/C, sinD=B/CC=A2+B2,cosD=AC,sinD=BC

Note that cosine and sine are both positive which means quadrant one

A=1, B=3, C=sqrt(1^2+3^2)=sqrt10A=1,B=3,C=12+32=10

cos D=1/sqrt10->D=cos^-1(1/sqrt10)=1.249...

sqrt10 cos(2x-1.249....)=0-> make sure to carry all the digits until the end then round

cos(2x-1.249...)=0

2x-1.249...=cos^-1(0)

2x-1.249... = pi/2 +pin

2x=1.249+pi/2 +pin

2x=2.8198...+pin

#x=1.4099...+pi/2 n#

n=0, x=1.4099

n=1, x= 2.9807

n=2, x=4.5515

n=3, x=6.1223

n=4, x=7.6931>2pi therefore we stop

S={1.4099,2.9807,4.5515,6.1223}

Apr 18, 2016

-9^@22 (or 350^@78); 80^@79 ; 170^@79

Explanation:

Divide both sides by 3.
sin (2x) + (1/3)cos (2x) = 0
Call tan t = (sin t)/(cos t) = 1/3 --> t = 18^@43.
The equation becomes:
sin 2x .cos t + sin t.cos 2x = 0
Apply the trig identity: sin (a + b) = sin a.cos b + sin b.cos a
sin (2x + t) = 0
a. sin 2x + 18.43 = 0 --> 2x = - 18.43 --> x = -9^@22
sin (2x + t) = pi = 180. --> 2x = 180 - 18.43 = 161.57 --> x = 80^@79
sin 2x + t = 2pi = 360 --> 2x = 360 - 18.43 = 341.57 -->
x = 170^@79
Answers for (0, 360)
Note that the co-terminal arc of (-9.22) is arc (350^@78)
80^@79; 170^@79; 350^@78
Check by calculator.
x = 80.79 --> 2x = 161.68 --> sin 2x = 0.32 --> 3sin 2x = 0.95.
cos 161/68 = - 0.95. Therefor: 0.95 - 0.95 = 0. OK