How do you solve 3sin theta - 4 cos theta = 23sinθ4cosθ=2?

2 Answers
Apr 18, 2016

S={209.551...+360^@n, 76.708...+360^@n}

Explanation:

Use the following formulas to transform the equation then solve
A cos x + B sin x = C cos (x – D)

C = sqrt(A^2+B^2 ), cos D = A/C and sin D = B/C

A=-4, B=3,C=sqrt(16+9)=sqrt25=5

cosD=-4/5->D=cos^-1 (-4/5) =143.13...^@-> Quadrant II

5cos(theta-143.13...^@)=2

cos(theta-143.13...^@)=2/5

#theta-143.13...^@=cos^-1(2/5)#

theta-143.13...^@=+-66.4218...+360^@n

theta=143.13...+-66.4218...+360^@n

theta = 209.551...+360^@n, 76.708...+360^@n

S={209.551...+360^@n, 76.708...+360^@n}

Apr 18, 2016

x = 76^@71 + 2kpi
x = 209.55 + 2kpi

Explanation:

Divide both sides by 3 -->
sin x - (4/3)cos x = 2/3
Call tan u = (sin u)/(cos u) = 4/3 --> u = 53^@13
sin x.cos u - sin u.cos x = (2/3)cos u = (2/3)0.60 = 0.40
Apply the trig identity: sin (a - b) = sin a.cos b - sin b.cos a -->
sin (x - 53.13) = 0.40 --> sin (23.58) and sin (180 - 23.58)
Calculator and unit circle give 2 solution arcs:

a. (x - 53.13) = 23^@58 --> x = 23.58 + 53.13 = 76^@71
b. (x - 53.13) = 180 - 23.58 = 156^@42 --> x = 156.42 + 53.13 =
= 209^@55