How do you solve (3tan^2x-1)(tan^2x-3)=0 in the interval 0 to 2pi?

1 Answer
Nov 16, 2016

x = {pi/6,(7pi)/6,(5pi)/6,(11pi)/6,pi/3,(4pi)/3,(2pi)/3,(5pi)/3}

Explanation:

(3tan^2x-1)(tan^2x-3)=0
Either
(3tan^2x-1)=0 or (tan^2x-3)=0

tanx=+-1/sqrt3

when

tanx=1/sqrt3=tan(pi/6)=tan(pi+pi/6)

So x= pi/6 or (7pi)/6

when

tanx=-1/sqrt3=tan(pi-pi/6)=tan(2pi-pi/6)

So x= (5pi)/6 or (11pi)/6

From (tan^2x-3)=0 we get

tanx=+-sqrt3

when
tanx=+sqrt3=tan(pi/3)=tan(pi+pi/3)

So x=pi/3 or (4pi)/3

Again when

tanx=-sqrt3=tan(pi-pi/3)=tan(2pi-pi/3)

So x=(2pi)/3 or (5pi)/3