Step 1) Solve each equation for a common term, in this problem it can be 40y:
3x - 10y = -25
color(red)(-4)(3x - 10y) = color(red)(-4) xx -25
(color(red)(-4) xx 3x) + (color(red)(-4) xx -10y) = 100
-12x + 40y = 100
-12x + color(red)(12x) + 40y = 100 + color(red)(12x)
0 + 40y = 100 + 12x
40y = 100 + 12x
4x + 40y = 20
4x - color(red)(4x) + 40y = 20 - color(red)(4x)
0 + 40y = 20 - 4x
40y = 20 - 4x
Step 2) Because the left side of both equations are now equal we can equate the right side of the equations and solve for x:
100 + 12x = 20 - 4x
100 - color(red)(100) + 12x + color(blue)(4x) = 20 - color(red)(100) - 4x + color(blue)(4x)
0 + (12 + color(blue)(4))x = -80 - 0
16x = -80
(16x)/color(red)(16) = -80/color(red)(16)
(color(red)(cancel(color(black)(16)))x)/cancel(color(red)(16)) = -5
x = -5
Step 3) Substitute -5 for x in the solution to either equation in Step 1 and solve for y:
40y = 100 + 12x becomes:
40y = 100 + (12 * -5)
40y = 100 + (-60)
40y = 100 - 60
40y = 40
(40y)/color(red)(40) = 40/color(red)(40)
(color(red)(cancel(color(black)(40)))y)/cancel(color(red)(40)) = 1
y = 1
The Solution Is:
x = -5 and y = 1
Or
(-5, 1)