How do you solve 3x^2-16x+5<=0 by algebraically?

1 Answer
May 12, 2018

The solution is x in [1/3, 5]

Explanation:

First factorise the equation

3x^2-16x+5=(3x-1)(x-5)<=0

(3x-1)(x-5)=0

when

{(3x-1=0),(x-5=0):}

{(x=1/3),(x=5):}

Let f(x)=(3x-1)(x-5)

Build a sign chart

color(white)(aaaa)xcolor(white)(aaaa)-oocolor(white)(aaaaaaa)1/3color(white)(aaaaaaaa)5color(white)(aaaa)+oo

color(white)(aaaa)3x-1color(white)(aaaa)-color(white)(aaaa)0color(white)(aaaa)+color(white)(aaaaa)+

color(white)(aaaa)x-5color(white)(aaaaa)-color(white)(aaaa)#color(white)(aaaaa)-#color(white)(aa)0color(white)(aa)+

color(white)(aaaa)f(x)color(white)(aaaaaa)+color(white)(aaaa)0color(white)(aaaa)-color(white)(aa)0color(white)(aa)+

Therefore,

f(x)<=0 when x in [1/3, 5]