How do you solve 3x^2-4x-2=03x24x2=0 by completing the square?

1 Answer
Oct 24, 2016

x=2/3+sqrt(10)/3x=23+103 , x=2/3-sqrt(10)/3x=23103

Explanation:

Firstly, we need to deal with the coefficient of x^2x2 (the 3).

In order to remove the 3 we divide the whole expression by 3.

(3x^2-4x-2)/3=0/33x24x23=03

x^2-4/3x-2/3=0x243x23=0

next, we complete the square, here is the general formula

x^2+ax=(x+a/2)^2-(a/2)^2x2+ax=(x+a2)2(a2)2

so using this formula,

x^2-4/3x-2/3=0x243x23=0

goes to

(x-4/6)^2-16/36-2/3=0(x46)2163623=0

simplifying down,

(x-2/3)^2-10/9=0(x23)2109=0

rearrange for x,

(x-2/3)^2= 10/9(x23)2=109

x-2/3= +-sqrt(10/9)x23=±109

x=2/3+sqrt(10)/3x=23+103 , x=2/3-sqrt(10)/3x=23103

these are the two solutions.